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Supplementary Materials

1. Quantitative Multi-Parametric Image Analysis (QMPIA)

a. Overview

The 3 channels (corresponding to Tfn, EGF and DAPI/SYTO 42 blue) of the fluorescent
images were first corrected for microscope misalignment and uneven illumination. QMPIA was
then performed in two sequential rounds of calculations. In the first round, aiming at the
identification of fluorescent vesicles and nuclei, the image intensity was fitted by a sum of
powered Lorenzian functions’, the coefficients of which were used to describe the features of
individual objects (e.g. intracellular position, size, fluorescence intensity, fluorescence integral
intensity, elongation). In the second round, a set of statistics was extracted from the
distributions of the endosome parameters measured in the first round (e.g. intracellular
position relative to the nucleus, size, intensity etc.). This set (vector) of values defined the
phenotypic profile of every image. Once all individual profiles were collected, data filtering and
processing was performed. First, images without cells along with images with over-confluent
cells and images with out-of-focus objects were removed on the basis of 4 quality control
parameters; second, a first round of normalization was performed relative to internal plate
controls to suppress plate-to-plate parameter variations; third, a second round of normalization
was performed relative to the total set of all measurements, in order to set an “un-biased”
zero-line and to weight the impact of individual parameters according to their reliability; fourth,
the profiles of images belonging to the same biological conditions (i.e. the same si/esiRNA)
were combined by distribution-mode searching proceduresz.

Following this analysis, we could assign a phenotype profile to each si/esiRNA screened.

This data were then used to calculate the gene phenotypic profiles.
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b. Microscope misalignment correction

Imaging all plates of the screen required an extended period of ~12 months. Frequent
maintenance of the microscope (OPERA, Evotec Technologies GmbH, PerkinElmer) was
required during the period of screening causing: 1) frequent variations in the unevenly
illuminated field of view of the cameras, 2) frequent variations in the linear misalignments
between the 3 image channels. To overcome these problems reference images for software-
assisted image corrections were generated daily. Uneven illuminations of the fields of view
were corrected on the basis of the pixel intensity distributions in images of 3 fluorescent dyes
(Opera adjustment plate, Evotec Technologies GmbH, PerkinElmer). Linear misalignments
between the 3 image channels and non-linear image distortions caused by small tilts of the
cameras were corrected on the basis of images containing 2.5um multicolour-beads randomly
distributed in the field of view (Opera adjustment plate, Evotec Technologies GmbH,
PerkinElmer). Correction parameters were calculated from 48 images with a number of beads
in the range of 50-100 per image. Beads were identified independently for all 3 channels and a
shift-rotate matrix with a B-spline approximation of squeezing/stretching field was calculated to

minimize beads images misalignments.

c. Low quality and empty images filtering

Images without cells, with over-confluent cells and of insufficient quality (i.e. with out-
of-focus objects) were removed according to the following procedure: first, all images with less
than 5 or more than 65 cells were removed; then the lower 10% of the remaining images were
removed according to a parameter that measures image focusing. Four quality control
parameters were used for image filtering: number of nuclei and mask area (area of the view-
field covered with cells) were used for the first step of filtering; nuclei intensity and nuclei
contrast were used for the second. The nuclei contrast parameter measures the sharpness of

the boundary of nuclei and nuclei intensity measures the nuclei fluorescence. Images with out-
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of-focus objects will present low intensity of the nuclei fluorescence and smooth nuclei

boundaries.

d. Fluorescent object identification

The method of fitting individual objects by a base function (i.e. point spread function of
the microscope® as well as its approximation by computationally more tractable formulas) is
common in many single object tracking algorithms4'5'6. Fitting single vesicles by the sum of base
functions overcomes the limits of “sub-resolution” size and allows for the description of “free-
shape” objects. To our knowledge, this is the first time that such an intensity fit approach has
been applied to multiple (hundreds-to-thousands) vesicles using the

MotionTracking/Kalaimoscope (www.kalaimoscope.com) software™’.

For the QMPIA, the object search was performed using the algorithm implemented in
MotionTracking. This algorithm fits the image intensity by powered Lorenzian as previously
described ! in the presence of Poisson noise. The fitting procedure required solving non-linear
optimization problems for fitting individual objects. Following optimizations, this procedure
required ~30-100 ms on a 3GHz Intel Xeon processor per object. Given both the large number
of objects and the 3 channels per image, the time required for the calculation of each image
increased to minutes. Thus, vesicle search became a rate limiting step for data processing. To
overcome this limitation, a Pluk-based automatic task distribution system® was developed to
share the calculations in a heterogeneous computer environment, including Windows based
PCs (31 CPUs), a Linux-based in-house cluster (60 CPUs) and the PC-Farm of the High
Performance Computing department of the University of Technology in Dresden (2,584 CPUs).
The server component of MotionTracking was ported by the authors to Linux, and the sharing
procedure was modified to work with the SSH (Secure SHell) protocol. The performance of the
task distribution system grew up almost linearly until 1,000 processors. As a result, the shared
calculation provided the ability to process images within the time frame required for their

acquisition by the automated microscope.
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e. Phenotype parameters (statistics)

The measurement of individual endosome parameters often resulted in complicated non-
Gaussian distributions that could not be used directly as part of the phenotypic profiles since
they would result in non-tractable long profile vectors (where every feature, i.e. fluorescence
intensity, size, intracellular positioning, etc, would have to be presented by a long set of binned
data). At the same time, simple statistics such as mean values are not sufficient to describe all
information encoded in the parameter distributions. For example, the addition of few large
endosomes to several hundreds small endosomes changes the endosome size distribution while
having little impact on the mean endosome size. To increase the sensitivity toward changes in
non-Gaussian distributions, we considered two additional mean values, one weighted by the
integral intensity of the endosomes and the other weighted by their mean. For a given
parameter, the mean weighted by the integral intensity biased towards the vesicles containing
most of the cargo, i.e. when a large fraction of cargo accumulates in few endosomes, these
endosomes will be the main contributors to the mean weighted by the integral intensity but
will be of limited influence on the simple, non-weighted mean value. Parameters weighted by
intensity are biased towards the brightest endosomes (where cargo is concentrated) and
therefore are different from the first two mean values. Since we included the weighted
statistics to take into account the long tails of the measured distributions, the non-weighted
means were replaced by median values to suppress the influence of outliers (see Suppl. Table 1).
The use of the 3 statistics described above for each parameter provided a more detailed
description of the phenotypes.

Some of the parameters, such as the number of endosomes and total amount of
internalized cargo, are meaningful only when normalized relatively to the cytoplasm area. The
parameters measuring the distance between endosomes and nucleus were normalized by the
effective radius of the nucleus (calculated as the radius of a circle with an area equal to the area

of the nucleus) to suppress dependency of these parameters on cell size.
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Suppl. Fig. 11. Endosome peer-to-peer distance distribution (distribution of the relative endosome density as a
function of the distance of any given endosome from all others, averaged over the whole endosomal population).
The set of distributions was calculated around every single endosome within the interval 0.5+30 pum. This set was
averaged to build the final distribution. The lower boundary of interval was chosen on the basis of both endosome
size and microscope resolution limit. The upper boundary corresponds to the maximal cell size. The precise values
of boundary do not significantly influence the final scoring. Upper panel: Endosome subcellular distribution. Nuclei
are stained with DAPI and pseudo-coloured in blue, early endosomes are stained with an EEA1 rabbit polyclonal
antibody and pseudo-coloured in green, LDL positive endosomes labelled by a 40 min internalization of LDL-DiD
are pseudo-coloured in red. Middle panel: lllustration of the peer-to-peer distance distribution for one marked
endosome “a”. The total distribution is the average over all endosome distributions. Bottom panel: peer-to-peer
distribution in control condition (black); peer-to-peer distribution after treatment of the cells with nocodazole, a
microtubule depolymerising agent that scatters the endosomes randomly, (red) and theoretical uniform
distribution (blue). Param.0 is the peak position of the approximated (see text) distribution. Param.1 is the integral
of the area above the uniform distribution (area is coloured in brown). Param.2 is the distance to the point where
the distribution crosses the uniform distribution level. It is worth to mention that the second peak on the right
corresponds to endosomes which belong to different cells (corresponding to a distance > 30 um). The peer-to-peer
distance distribution of the nocodazole treated sample mimics the uniform distribution, demonstrating the efficacy
of this distribution in measuring endosomes clustering.
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The degree of endosome clustering was measured using 3 parameters (see below)
calculated from the endosome peer-to-peer distance distribution, a distribution of the
probability to find another endosome on unit area at given distance from the given endosome.
From the distribution we considered 1) the position of the maximum (corresponding to the
most probable distance between endosomes in a cluster, Param.0), 2) the integral of the part of
the distribution that is above the uniform probability distribution level (corresponding to the
“participation in the cluster”, Param.1; see Suppl. Fig. 11) and 3) the peer-to-peer distance
where the distribution crosses the uniform distribution level (corresponding to the size of
cluster, Param.2; see Suppl. Fig. 11). Given that the distribution is noisy, the peak position
(Param.0) was determined by quadratic (parabolic) approximation of the distribution in the
least-square sense. The approximation was done in logarithmic scale on the abscissa axis.

Co-localization between markers was calculated on the basis of individual object analysis.
Object A is considered to colocalize with object B if object B covers at least 50% of the area of
object A. To correct for apparent (random) colocalization, the objects were randomly
permutated while maintaining the local density distribution. The random colocalization,
calculated as average of 5 permutation calculations, was subtracted from the measured
colocalization using the following formula:

Cmeasured -C

_ random
corrected
1-C

C

random

f. Phenotype profiles

All measured parameters were normalized relative to the internal plate control (MOCK
transfected cells) and combined into multi-parametric “profiles” describing the phenotype of
the gene knockdown. Every parameter is subjected to both the noise of the measurement and
of the biological system. The quality of parameters, meaning their robustness to noise, is
dependent on both the procedure for the calculation of the parameter and the particular assay.
For example, we found that the total intensity of the Tfn and EGF channels (computationally
the same parameter but applied to different endocytic markers; see below), showed very

different degrees of robustness.
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f.1 Parameter normalization

We calculated 62 parameters to profile the endocytic phenotypes in the microscopic
images. Of these, four parameters (number of cells, nucleus contrast, area of image covered by
cells and mean nucleus intensity) were used as quality control parameters, designed to reject
low-quality images i.e. images without cells, over-confluent cells, out-of-focus images, etc. The
remaining 58 parameters were normalized in two sequential rounds.

The first round of normalization eliminated plate-to-plate variability with respect to e.g.
changes in laser intensity, fluorescent cargo, staining quality and other sources of experimental
variation throughout the screen. For this purpose, any sample which is far away from saturation
(i.e. an extreme phenotype) would be suitable. Since normalization is a potential source of
error, the more images are available, the more accurate is the measurement of the “reference”
phenotype and the lower is the normalization error. The mock sample (Mock-transfected cells,
i.e. treated with the transfection reagent but no si/esiRNA) satisfied those criteria and was
chosen as the reference condition. In each plate a large number of Mock images (~180 images)
were acquired (see plate layout in Suppl. Fig. 5). Thus, parameters were replaced by moderated

z-scores, which were calculated relative to the Mock control condition, using the formula:

— P — E[pMOCK] (1)
I SDMOCK

where E[pMOCK]- is the mean of each parameter in Mock-treated wells and SD,,,. - the

standard deviation (SD) for each parameter in Mock-treated wells calculated per plate.
The second round of normalization was devoted to set to zero the general, non-specific

II’

RNAi phenotype, or in other words, nullify the “negative control” phenotype. However,
“negative” control siRNAs (e.g. luciferase or scrambled siRNAs) are also not immune to off-
target effects (data not shown). To circumvent this problem, in this study we used the mode of
the total set of all siRNAs (over 100,000) as “negative control” for normalization. With the
mode? of the total set the impact of any particular off-target effect is averaged out due to the

large number of si/esiRNAs considered. Hence the second procedure sets the mode value of the
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total set as a “zero-line”, i.e. data from all the plates were merged and secondary moderate z-
scores

z, —mode({z, })
" mean(SD

(2)

i
z;:equal _ condition )

were calculated based on the total set. Assuming that the total set of si/esiRNAs in the
genome-wide library is unbiased, the mode of the total set was considered as “negative
control” (“unspecific-phenotype”).

The parameters were scaled (normalized) by inverse modes of the respective SDs (i.e.
the most probable amplitude of the SD of any given parameter within the fixed condition). For
this, the SD was first calculated for every single condition (untreated, mock, si/esiRNA, etc.) and

then the mode of the SD distribution (mean(SD ) ) was used for normalization. We

z;:equal _condition
would like to stress that the SD mode is independent (at first approximation) of the variance of
any given parameter between the different si/esiRNA and dependent mainly on the robustness
of the parameter measurement for every given condition. This normalization allows us
weighting the individual parameters according to their respective robustness before they can
be used for phenotypic scoring. As a result, the mode of Z distribution is zero, and the SD of

the measurement noise equals the unity.

f.2 Parameter robustness
The parameters were tested for their robustness relative to the reproducibility of the
assay. This test was performed on independent replicates of the screen of all human kinases
and phosphatases (1,459 genes, 9,330 siRNA). The stability of each parameter (Pearson
correlation between replicates) was calculated using the formula:
> (a0 - ey Yoy - ele

c, =1 (3)
(J-1)SD,,SD, .

Here, the upper index denotes the screen replica, the first index (i) the parameter, the second
index (j) the si/esiRNA. Results of these calculations are presented in Suppl. Table I. Considering

that the measured value y;; of each parameter (i) for a given si/esiRNA consists of two
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components: y; ; =1, +6‘i(j), where 7, - is the phenotype response to a given si/esiRNA, 8}”- is

the noise of the measurement and the biological variability of the assay in the j-th experiment.
Then, the Pearson correlation between two experiments for each parameter iis:

E[Zi(l) 'Zim] E[77i2 + 77i3i(1) + 77i5i(2) + 3i(l)5i(2)]

C, = =
\/E _(Zi(l))z_' E _(Zi(z) )2_ \/E _77i2 + 277i<9i(1) + (gi(l) )2_‘ E _77i2 + 277i€i(2) + (8i(2))2 ]

where the low index (i) is the index of individual parameters, the upper index (1 or 2) is the

(4)

index of each independent experiment and averaging is performed over the whole si/esiRNA
set. It is worth mentioning that, technically, the normalization was done before the correlation
analysis and was described according to the data processing flow. However, it could be done
also before the second round of normalization.

Given that the noise is not correlated between independent experiments, and that the

mean of the noise value is E(¢) =0 with a variance D(g;) = &, , we have:

Eln?] SNR?
Ci = 2 2 = 2 (5)
Elp? |+ o2 SNRZ+1
E niz “.: ) - .
where SNR, = -~ denotes the “signal-to-noise” ratio for parameter i.
O

In other words, the Pearson correlation coefficient shows the robustness of the
parameters with respect to measurement errors and instability of the biological assay. From
Suppl. Table I, one can see that computationally equal parameters, i.e. the same parameter
measured on different channels, shows essentially different Pearson correlation values in some
cases. This results from the different specific-to-random (noise) signal ratios of different
parameters, which is proportional to the number of genes involved in the parameter
modulation and reversely proportional to the square root of the biological noise (variance),
between the two different markers. Generally, the Pearson correlation coefficients provide an

objective basis to select the most “specific” (reliable) parameters for phenotypic profiling.

f.3 Determination the parameters to use for the phenotype profile
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The parameters used to calculate the phenotypic profiles were selected based on a
correlation threshold of 0.4 (see Suppl. Table 1 and Suppl. Fig. 12). Parameters marked by “-“
were excluded from subsequent analysis. Parameters marked by “-+” were kept for further
analysis even though their value was below this threshold, since their counterpart in the other
channel was significantly above the threshold. Parameters marked by “+-“ were excluded since
they were not significantly above the threshold in both channels. In total, 12 parameters were

considered to be insufficiently reliable and were excluded from subsequent analysis. The RNAI

profile was, thus, described by 46 parameters.

g 07—
S 0.6-
E

g 0.5 -
4o
2 0.3
3 02+

I I I I I

0.0 10 20 30 40 50

Parameter #

g 1.0+

2 084

=

= 0.6

(0]

.2 0.4 —

E 0.2

=] 2 T

g

O 00——F—F—FT——7T T T T 717 T

0.1 02 03 04 05 0.6 0.7 0.8 09

Pearson Correlation

Suppl. Fig. 12. The upper panel shows the correlation of the parameters enumerated in Table 1. The bottom panel
presents the cumulative distribution of the parameter Pearson correlation coefficients (black) and the fitted
normal distribution (blue). The latter was used to determine the threshold for parameter discrimination (t = 0.4).

Notably, singular value decomposition (SVD) analysis showed that the parameters are partially

correlated but non-redundant (data not shown).
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2. Gene profile estimation and scoring

a. Estimation of gene profiles

The detailed description of the mathematical procedures employed for the estimation
of the phenotypic gene profiles and the scoring will be detailed in a separate manuscript. Here
we provide a short overview of the approach. Since virtually every RNAi phenotype profile is
contaminated by off-target effects (manuscript in preparation), the assessment of the “on-
target” component of the gene silencing phenotype (gene profile) requires filtering the off-
target effects from the profiles of each individual si/esiRNAs. For this, we built a Bayesian
probabilistic model of gene profiles, based on the following five assumptions:
1) Quantitative variations in target protein degradation affect the phenotype quantitatively but
not qualitatively, an assumption supported by the knockdown time-course experiments (data
not shown);
2) On- and off-target components of a profile are additive since it is reasonable to assume that
a) off-targets are randomly distributed among the genome and b) knockdown of most genes
produce mild phenotypes;
3) Off-target gene silencing of different si/esiRNAs targeting the same gene are independent (at
least with respect to multi-parametric profiles)
4) Spread of directions of the phenotypic vectors is described by von Mises-Fisher distribution,
analogue of Gauss distribution on unit hypersphere, i.e. is a limit distribution for the sum of
random equally distributed components
5) All si/esiRNAs targeting a given gene have the same (equal) probability to be ineffective (i.e.

there is no bias in the si/esiRNA design).

Based on these assumptions, the most probable phenotype profile of every gene, given the
profiles of all targeting siRNAs, was estimated by a nested two-stage (for direction and for

amplitude) Expectation-Maximization (EM) algorithm:

11
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First, in order to weight the impact of the individual parameters on the gene profile according
to their respective experimental uncertainty, all parameters were normalized to the level of
measurement uncertainty as described above (f.1). Then, the multi-parametric profiles of the
individual si/esiRNA were considered as vectors in the multi-dimensional parameter space
whose direction and amplitude were defined by the qualitative and quantitative features of the
phenotype, respectively. This model therefore considers two components: 1) the normalized
phenotypic profile (the vector projection on the unit hypersphere, which corresponds to the
nature of the phenotype and is considered independent of its strength) and 2) the phenotypic
amplitude (length of the vector). The normalized phenotypic profile of every RNAI (directional
part) obeys the von Mises-Fisher distribution with an unknown concentration coefficient k :

PR | k) =—— - explk - ') (12
(27)2-1, (k)

where X is the vector of a si/esiRNA phenotype profile normalized to unity, z is a vector of a

gene phenotype profile normalized to unity, k is the concentration parameter, n is the

phenotype vector dimension (number of parameters), | (k) is a modified Bessel function. To
—1

take into account the biological correlation between the different parameters, the angular
distance was calculated as zi' C™'X, where C is the parameter correlation matrix. The final

equation includes the gene phenotype amplitude by the mean of the gene concentration
coefficient (k).

After the estimation of the gene profile vectors direction their amplitude A was calculated by
the maximization of probability of their projection on the corresponding si/esiRNA profiles. This
calculation involves as additional parameter the probability of every single RNAi to be impotent
(B). The cycle starts with a B = 0.1 and k estimated based on the amplitude of the average of all
si/esiRNA profiles.

After the first estimation of the gene profiles direction and their amplitude, the values of k and

B are recalculated and the loop is iterated until the calculation converges.
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It is worth to mention, that the gene profiles which are found in this way are unique.
They are found on the basis of all confirmatory profiles (based on profile correlations) of
individual siRNAs/esiRNAs, no profile flexibility/changeability was allowed at all. To estimate
the reproducibility of the gene profiles, we re-screened twice the kinome-phosphatome (9,330
siRNAs, 1,459 genes), including a large fraction of the gene hits (235). Reproducibility of gene
profiles was estimated on the basis of confirmatory profiles (i.e. correlation coefficient higher
than random with p.yae< 0.05) and found to be 84% for the genes with strong phenotype (XZ p-
valueS 0.05).

b. Scoring of Gene profiles

The first scoring criteria of the gene phenotype is based on the phenotype strength,
which is defined by the p-value of y° distribution. To reduce the “over-scoring” of correlated
parameters the p-value was calculated as y> = A>-ii'X"'i, where 3 — is the co-variation
matrix, i - gene profile. In addition to the y° p-values we also considered a novel “pheno-
score” value to characterize the effect of gene knock-down. The pheno-score assesses the
probability that the knockdown produces not just a significant, but also a specific phenotype.
The model behind the calculation of this value is similar to that used to compute gene profiles,
and assumes that the observed knockdown phenotype profile T is the sum of two vectors: the
vector of the “pure” phenotype, defined by a discrete system state (Cluster-group profile; see
below) resulting from hitting certain cellular pathway, and a random noise vector fi. The

“pure” phenotype vector has fixed direction P and has an unknown length of | distributed as

\/? with 1 degree of freedom. The noise vector has a random length drawn from the\/?
distribution with d (number of dimensions i.e. number of parameters) degrees of freedom and
a random direction. The cosine of the angle to the ideal phenotype vector is distributed as von
Mises-Fisher with kK =0 marginalized over (n-1) azimuthal angles. The joint probability
distribution P(l,p,F)dl is as a product of probabilities of the length of the noise vector, the

angle between the noise vector and the “pure” phenotype vector, and the prior probability of |
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yielding observed vector I . Given T and P, this probability depends only on |. The score is the

integral over probability of | being more than the average noise length. The last one equals to

Vd.

Importantly, we use the results of mean-shift clustering of the gene profiles (see below)
to implement the pheno-score method. For each gene profile T the mode of its respective

cluster is taken as an estimate of the ‘pure’ phenotype vector p. Moreover, we exclude from

scoring the cluster groups 1 and 3, as enriched in metabolic or toxic, phenotypes.

3. Phenotype clustering by a mean-shift algorithm.

To perform clustering of the gene phenotypic profiles we developed a modified version of
the mean-shift clustering algorithm. Mean-shift is a non-parametric clustering algorithm for n-
dimensional vector datasets’. The procedure iteratively shifts every vector x of the dataset to
m(x), an average of the vectors of the dataset weighted by the kernel function, which is a
function of distance between the vectors. The vector m(x)—x is called the mean-shift vector,
and it is a non-parametric estimate of the gradient of point density around x. By iteratively
shifting the data vectors to the corresponding ‘means’ the algorithm migrates them towards
the gradient of density until all points converge to local maxima (modes) of density, forming
clusters. A variety of kernel functions may be used in the algorithm, given several restrictions:
the kernel is a non-negative monotonously decreasing function of the distance between vectors
with limited integral over the multi-dimensional parameter space.

We have designed a version of the mean-shift algorithm, which provides several distinct
features.

We treated phenotypic profiles as directional data (vectors in the n-dimensional
parameter space), in which the direction of the vector corresponded to the nature of the
phenotype, whilst the length was a measure of the strength (quantity) of the phenotype.
Hence, a natural measure of profile similarity was the cosine of the angle between the

respective vectors.
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The von Mises — Fisher distribution’®, was used as a kernel function. The distribution
concentration parameter k defines the width of the kernel estimate of the gradient density,
where the higher k corresponds to a narrower kernel and thus provides a finer resolution. The
m(x) is the sum of all vectors in the dataset weighted by the kernel function and by their
lengths, assuming that directions of stronger phenotypes are more precisely measured and,
therefore, are more valuable for the estimation of the density gradient. Our algorithm is a
blurring mean-shift, i.e., every point of the dataset is shifted by the corresponding m(x) value
after each clustering iteration. This accelerates cluster convergence, but does not affect the
quality of segmentation.

The disadvantage of the blurring mean-shift algorithm is that groups of vectors (gene
profiles) formed at early iterations continue to migrate towards each other at later iterations.
This causes a shift of the cluster modes in comparison to the modes of the initial dataset. In
order to resolve this problem, at the end of the clustering procedure the vectors around which
the clusters are formed are considered to be preliminary estimates of the modes and are
included into another run of non-blurring mean-shift on the initial dataset. These vectors
migrate until convergence to the real density modes, thus yielding accurate mode estimates.

The total dataset of 20386 gene profiles was clustered at a series of resolution levels
defined by the values of the kernel spread parameter k ranged from 5 to 100 with step 5. The
comparison of clusters formed at various resolution levels shows that all the major clusters
(more than 100 profiles) are obtained from clustering with k up to 55, and clustering with
higher resolution mostly increases of the amount of very small clusters (less than 10 profiles),
which prompted us to select the cluster set obtained with k of 55 for the following analysis.

The robustness of clusters produced by mean-shift was assessed by clustering of 100
random subsets of 4000 gene profiles each are sampled from the total dataset of 20386. The
clusters larger then 100 gene profiles were reproduced in 86% of cases, as measured by cluster
mode similarity at the threshold of 0.95. The clusters matching between two subsets shared on

average 76% of their gene profiles.

4. Bioinformatics analysis
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a. Functional Annotation

Functional Annotations were obtained from several sources. NCBI RefSeq (Release 28)
was used for gene sequences and descriptions, functional domains were annotated using
InterProScan™? from EBI, molecular function and biological process data were retrieved from
both the Panther Ontology (via iprscan®®) and Gene Ontology™® (via RefSeq / NCBI Gene
annotations), pathway data was retrieved from the KEGG database®™ and further functional
annotation along with protein-protein interaction data was retrieved from the HPRD
database'®.  Furthermore, relevant literature, human disease information (OMIM”) and
previous characterization of the hits was obtained from the NCBI Entrez system by automated

data mining, as well as manual searches.

b. Detection of Overrepresented Functional Groups in the dataset

In order to determine the over-represented functional groups (Panther Biological
Process, Panther Molecular Function, InterPro Domains, Gene Ontology, KEGG Pathways) in the
dataset we calculated p-values of the occurrence of all annotation terms and functional
domains within the positive hits in our screen relative to a background database (the screening
library mapped to RefSeq release 28). P-values of were calculated based on the hypergeometric

distribution and were then ranked to determine which terms were over-represented.
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